## МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ ПРИ ОБРАБОТКЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ КОЛЕС ВАГОНОВ





Приведены результаты исследований вероятностно-статистическими методами, позволяющими определить закон распределения для геометрических параметров колес вагонов. Обоснована целесообразность определения закона распределения случайной величины. Перечислен ряд обстоятельств, от которых зависит объем выборки. Обоснована практическая значимость исследования.

<u>Ключевые слова</u>: вагон, статистика, колесная пара, выборка, закон распределения, выборочное среднее, исправленная дисперсия

EDN: BRBDAJ

ля определения закона распределения случайной величины при обработке данных, полученных при изучении интенсивности изнашивания поверхности катания колесных пар железнодорожных вагонов целесообразно применять вероятностно-статистические методы. Знание закона распределения случайной величины, отвечающей за показатель изнашивания поверхности катания колесных пар, объясняется рядом причин, к которым относятся следующие:

- возможность значительной экономии времени и средств, затрачиваемых на получение информации, доступной на начальном этапе жизненного цикла колес подвижного состава;
- выявляющиеся в законе распределения статистические закономерности в достаточной мере свободны

от элементов случайности, что является основным условием прогнозирования технических возможностей колес подвижного состава на будущее.

Вероятностно-статистические оценки опираются на эксперимент, опытные данные, систему наблюдений, а также следует отметить, что чем больше объем статистического материала, тем точнее закономерности, наблюдаемые в процессе изнашивания колесных пар. В [1;2] приводятся различные вероятностно-статистические подходы для определения законов распределения случайных величин при обработке экспериментальных данных.

Объем выборочной совокупности колесных пар для исследования процесса изнашивания зависит от ряда обстоятельств. Перечислим основные из них:

Садыкова Оксана Ильисовна, кандидат педагогических наук, доцент кафедры «Нетяговый подвижной состав» Российской открытой академии транспорта Российского университета транспорта (РОАТ РУТ (МИИТ)). Область научных интересов: моделирование динамических систем в задачах железнодорожного транспорта, моделирование образовательного процесса в транспортном вузе. Автор 79 научных работ, в том числе 19 учебно-методических пособий и двух монографий.

**Сергеев Константин Александрович**, доктор технических наук, доцент кафедры «Нетяговый подвижной состав» Российской открытой академии транспорта Российского университета транспорта (РОАТ РУТ (МИИТ)). Область научных интересов: технологическая подготовка производства вагоноремонтных предприятий. Автор 137 научных работ, в том числе двух монографий.

# «МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ ПРИ ОБРАБОТКЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ КОЛЕС ВАГОНОВ»

- специфика объекта исследования;
- ресурсы (временные, людские);
- степень точности результата, на которую рассчитывает исследователь.

Рассмотрим методы, подобранные авторами для определения законов распределения случайной величины и адаптированные для обработки измерений геометрических параметров колес вагонов (прокат, толщина гребня, крутизна гребня, толщина обода).

Был произведен замер проката колеса железнодорожных вагонов, мм, результат представили в виде табл. 1, в которой дана выборка объемом n=30.

Авторы предположили, что данная выборка подчинена нормальному закону распределения.

Рассмотрим метод определения закона распределения выборки, который заключается в анализе значений асимметрии  $A_s$  и эксцесса  $E_k$ . Вычислим основные параметры выборки, отвечающей за такой показатель, как прокат колеса железнодорожных вагонов, представленные в табл. 1. Получим:

$$\bar{x}_{_{\rm B}}$$
=0,98 — выборочное среднее;

 $s^2$ =0,14 — исправленная дисперсия;

$$\sigma_{_{\rm B}}^2 = 0.14$$
 — выборочная дисперсия.

Рассчитаем показатель асимметрии  $A_s$  по формуле

$$A_s = \frac{m_3}{\sigma_s^3} ,$$

где  $\sigma_{_{\rm B}}{}^3$  — куб стандартного выборочного отклонения, а  $m_3$  — центральный эмпирический момент третьего порядка. Для несгруппированной статической совокупности центральный эмпирический момент третьего порядка рассчитаем по формуле

$$m_3 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}_{H}\right)^3}{n} .$$

Получим  $m_3 = 0.006359$ , а  $\sigma_{\rm g}^3 = 0.05236$ .

Рассчитав показатель асимметрии получим, что  $A_s$ =0,1214. Положительное значение  $A_s$  показывает, что распределение скошено вправо. Значение  $A_s$ =0,1214 по модулю меньше, чем 0,25, значит асимметрия незначительна. Чем меньше по модулю  $A_s$ , тем рассматриваемое эмпирическое распределение ближе к нормальному распределению.

Рассчитаем показатель эксцесса  $E_k$  по формуле

$$E_k = \frac{m_4}{\sigma_{\scriptscriptstyle B}^4} - 3 \ .$$

Центральный эмпирический момент четвертого порядка рассчитаем по формуле для несгруппированных данных:

$$m_4 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}_{H}\right)^4}{n}.$$

Получим  $m_4$ =0,023619, а  $E_k$ =-1,79497. Полученный отрицательный эксцесс показывает, что распределение является более низким и пологим относительно эталонного нормального распределения.

Можно сделать следующие выводы:

- рассматриваемая выборочная совокупность практически симметрична, но несколько ниже, чем нормальное распределение с параметрами  $\overline{x}_{\rm B} = 0.98$  и  $\sigma_{\rm B}^2 = 0.14$ ;
- выборка проката колеса железнодорожных вагонов близка к нормальному закону распределения.

Рассмотрим второй метод определения закона распределения выборки, отвечающей за показатель — прокат колеса железнодорожных вагонов проката, мм. Будем проверять гипотезу о нормальном распределении данной совокупности по критерию Пирсона.

Разобьем выборку на интервалы в количестве

$$r \approx 5 \lg(n) \approx 5 \lg(30) \approx 7$$
.

Составим расчетную таблицу (табл. 2). Найдем выборочную среднюю:

$$\overline{x}_{\scriptscriptstyle \theta} = \frac{1}{n} \sum x_{\scriptscriptstyle k} n_{\scriptscriptstyle k} = 0.951$$
.

#### Таблица 1

| Прокат, мм | 0,47 | 0,48 | 0,55 | 0,54 | 0,64 | 0,65 | 0,68 | 0,78 | 0,81 | 0,84 | 0,88 | 0,9 | 0,92 |
|------------|------|------|------|------|------|------|------|------|------|------|------|-----|------|
| Частота    | 1    | 1    | 1    | 1    | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 1   | 1    |

Окончание табл. 1

| Прокат, мм | 0,95 | 0,99 | 1,02 | 1,07 | 1,13 | 1,15 | 1,19 | 1,24 | 1,27 | 1,32 | 1,39 | 1,41 | 1,765 |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|-------|
| Частота    | 2    | 1    | 1    | 1    | 2    | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1     |

№ 4′ 2022 **21** 

Найдем выборочную дисперсию:

$$D_{\rm B} = \frac{1}{n} \sum (x_k)^2 n_k - \overline{x}_{\rm B}^2 = 0.089783583$$
.

Найдем выборочное среднее квадратическое отклонение:

$$s = \sqrt{\frac{n}{n-1}}D_{\rm B} = 0.304761495 \ .$$

Вычислим теоретические частоты  $n_i$ , учитывая, что n=30, h=0,185, s=0,304761495, по формуле

$$n_i = \frac{nh}{s} \varphi(u_i) .$$

Причем заметим, что

$$u_i = \frac{x_i - \overline{x}_{\scriptscriptstyle B}}{S} .$$

Составим расчетную таблицу (табл. 3).

Суммируя последний столбец табл. 3 получаем, что  $\chi^2_{_{\text{выб}}}$ =5,0982. Вычислим  $\chi^2_{_{\text{кр}}}$ =6 по табл.«Крити-

ческие точки распределения  $\chi^2$ ». Число степеней свободы равно k=5-3=2 (5 — число групп в выборке), а уровень значимости  $\alpha$ =0,05. Так как  $\chi^2_{\text{выб}} > \chi^2_{\text{кр}}$ , то нет оснований отвергнуть гипотезу о нормальном распределении выборки. Следовательно, такой показатель износа колеса, как прокат колеса железнодорожных вагонов, подчинен нормальному закону распределения.

Выбор перспективных информационно-статистических методов обработки данных, получаемых при эксплуатации колес подвижного состава, описание статистических методик расчета являются необходимыми в современных условиях развития железнодорожной отрасли. В процессе своего исследования авторами были использованы статистические, аналитические и графические методы. Практическая значимость исследования заключается в том, что анализ существующих информационно-статистических методов обработки данных, получаемых при эксплуатации колес подвижного состава, обоснует переход к описанию новых расчетных методик.

Таблица 2

| Интервалы                     | (0,47;<br>0,655) | (0,655;<br>0,84) | (0,84;<br>1,025) | (1,025;<br>1,21) | (1,21;<br>1,395) | (1,395;<br>1,58) | (1,58;<br>1,765) |
|-------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Частоты                       | 7                | 4                | 7                | 6                | 4                | 1                | 1                |
| <b>О</b> тносительные частоты | 0,23             | 0,13             | 0,23             | 0,2              | 0,13             | 0,03             | 0,03             |
| Середина<br>интервала         | 0,5625           | 0,7475           | 0,9325           | 1,1175           | 1,3025           | 1,4875           | 1,6725           |
| Величина $u_i$                | -1,28            | -0,67            | -0,06            | 0,55             | 1,15             | 1,760            | 2,37             |
| $\varphi(u_i)$                | 0,1758           | 0,3187           | 0,3982           | 0,3429           | 0,2059           | 0,0848           | 0,0241           |
| Теоретические частоты $n_i$   | 3,2015           | 5,8038           | 7,2516           | 6,2446           | 3,7496           | 1,5443           | 0,4389           |

#### Таблица 3

| После объединения эмпирических частот $n_k$ | $n_i$  | $(n_k-n_i)^2$ | $(n_k-n_i)^2/n_i$ |
|---------------------------------------------|--------|---------------|-------------------|
| 7                                           | 3,2015 | 14,4286       | 4,5068            |
| 4                                           | 5,8038 | 3,2537        | 0,5606            |
| 7                                           | 7,2516 | 0,0633        | 0,0087            |
| 6                                           | 6,2446 | 0,0598        | 0,0096            |
| 6                                           | 5,7328 | 0,0714        | 0,0125            |
|                                             |        |               | 5,0982            |

На основе проведенного анализа установлено, что рассмотренные методы определения законов распределения случайной величины при ряде ограничений на объемы выборочных совокупностей [1;2] могут найти применение в задачах статистического прогнозирования технического состояния вагонов в процессе эксплуатации.

### Литература

- 1. Анисимов, П.С. Испытания вагонов: монография / П.С. Анисимов. —Москва: Маршрут, 2004. —196 с. —ISBN 5-89035-152-4. —Текст: непосредственный.
- 2. Шубин, Р.А. Надежность технических систем и техногенный риск: учебное пособие для студентов 3, 4 курсов дневного отделения специальности 280102 «Безопасность технологических процессов и производств» / Р.А. Шубин; М-во образования и науки Российской Федерации, Федеральное гос. бюджетное образовательное учреждение высш. проф. образования «Тамбовский гос. технический ун-т». —Тамбов: Изд-во ФГБОУ ВПО «ТГТУ», 2012. —79 с. —ISBN 978-5-8265-1086-5. —Текст: непосредственный.
- 3. Гмурман, В.Е. Теория вероятностей и математическая статистика: учебное пособие для студентов вузов / В.Е. Гмурман. —9-е изд., стер. —Москва: Высшая школа, 2003. —479 с. —ISBN 5-06-004214-6. —Текст: непосредственный.
- 4. Сергеев, К.А. Математические модели структурного анализа технологических процессов вагоноремонтного производства / К.А. Сергеев. –Текст: непосредственный // Наука и техника транспорта. −2005. –№3. –С. 28–36.
- 5. Горлач, Б.А. Теория вероятностей и математическая статистика: учебное пособие / Б.А. Горлач. Санкт-Петербург [и др.]: Лань, 2013. —319 с. —ISBN 978-5-8114-1429-1. —Текст: непосредственный.
- 6. Сажин, Ю.В. Анализ временных рядов и прогнозирование: учебник / Ю.В. Сажин, А.В. Қатынь, Ю.В. Сарайкин. —Саранск: Изд-во Мордов. Ун-та, 2013. —132 с. —Текст: непосредственный.
- 7. Сергеев, К.А. Ультразвуковой контроль колёсных пар и безопасность движения поездов / К.А. Сергеев, В.В. Готаулин. —Текст: непосредственный // Безопасность движения на железнодорожном транспорте: сборник научных статей / Поволжский филиал РГОТУПС; под ред. А.А. Сатарова. —Саратов: НАДЕЖДА, 2002. —С. 49—51.
- 8. Конструирование и расчет вагонов: учебник /В.В. Лукин, П.С. Анисимов, В.Н. Котуранов [и др.]; под ред. П.С. Анисимова. -2 е изд., перераб. и доп. Москва: ФГОУ «Учебно методический центр по образованию на железнодорожном транспорте», 2011.-688 с. ISBN 978-5-9994-0060-4. Текст: непосредственный.
- 9. Конструирование и расчет вагонов: учебное пособие / В.В. Лукин, Л.А. Шадур, В.Н. Котуранов, А.А. Хохлов; под редакцией В. В. Лукина. Москва: 2000. 727 с. ISBN 5-89035-024-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/60024 (дата обращения: 19.10.2022).
- 10. ГОСТ 9238- 2013. Габариты железнодорожного подвижного состава и приближения строений = Construction and rolling stock clearance diagrams: национальный стандарт Российской Федерации: издание официальное: утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. № 1608-ст: дата введения 2014-07-01 / разработан Открытым акционерным обществом «Научно-исследовательский институт железнодорожного транспорта» (ОАО «ВНИИЖТ»). Москва: Стандартинформ, 2014. Текст: непосредственный.

№ 4′ 2022 **23**