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Целью неразрушающего контроля (НК) техниче-
ских объектов является не только обнаружение 
дефектов, но и оценка потенциальной опасно-

сти последних. Распознавание дефектов разного типа 
существенно повышает информативность контроля, 
позволяет оптимизировать технологические процессы за 
счет реализации так называемого активного контроля. 

В настоящее время наиболее динамично развиваю-
щимся направлением при решении задач НК является 
анализ дефектоскопической информации в виде изо-
бражений, причем распознавание дефектов сводится 
к визуальному распознаванию изображения обна-
руженного дефекта человеком-оператором. Такое 
распознавание имеет ряд естественных недостатков: 

субъективизм, малая надежность, зависимость от 
компетентности оператора и т.д.

Достоверность и объективность оценки получен-
ных результатов непосредственно зависят от исполь-
зуемых средств и способов регистрации, правильный 
выбор которых обеспечивает технико-экономическую 
эффективность контроля. Применение телевизионных 
и фотографических средств для регистрации резуль-
татов НК с высокой точностью повышает надежность 
и достоверность обнаружения имеющихся на поверх-
ности изделия дефектов, а также позволяет получить 
данные о степени опасности дефектов.

В настоящее время для решения задач НК при-
меняются автоматизированные системы обработки 

Р.Р. ИкакаА.Г. Отока

В статье рассмотрены вопросы применения свер-
точных нейронных сетей для обнаружения и клас-
сификации дефектов, выявляемых при магнито-
порошковом контроле деталей и составных частей 
подвижного состава железных дорог. Предложен 
вариант алгоритма построения нейронной сети 
на базе существующей среды программирования 
Google Colab, библиотек Tensor Flow и Keras и языка 
программирования Python.
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изображений, машинного зрения. В качестве при-
емника изображения используются различные видео-
контрольные устройства. Программное обеспечение, 
входящее в состав этих систем, позволяет с разной 
степенью объективности проводить количественный 
анализ изображения дефектов.

Применение специализированных методов и алго-
ритмов автоматического распознавания изображений 
для систем при реализации различных методов НК 
позволяет существенно повысить их эффективность. 
Одними из таких алгоритмов в настоящее время 
являются алгоритмы, основанные на использова-
нии искусственных нейронных сетей (НС) (neural 
network – NN) [1–3]. 

Области применения искусственных НС весьма 
разнообразны. Нейронные сети нашли применение в 
самых различных сферах деятельности, таких как эко-
номика и бизнес; медицина и здравоохранение; робото-
техника; охранные системы; промышленность химиче-
ская, нефтеперерабатывающая; энергетика [4]. 

Традиционные методы НК, такие как радиацион-
ный, ультразвуковой, магнитный и др., имеют свои 
особенности и ограничения и требуют при интерпре-
тации результатов участия опытных специалистов. В 
этой связи возникает потребность в новых методах, 
которые могут снизить роль человеческого фактора 
и повысить точность и эффективность НК. 

Использование НС в НК позволяет решить такие 
задачи, как автоматизация и увеличение скорости 
контроля; повышение точности; возможность обра-
батывать различные типы данных; обучение на основе 
имеющихся данных.

В настоящее время искусственные НС уже нашли 
применение в таких видах НК как радиационный [4;5], 
акустический (ультразвуковой, акустико-эмиссион-
ный) [6;7], вихретоковый [8], тепловой [9], капил-
лярный [10–12].

Случаев применения НС для анализа и классифи-
кации дефектов при магнитно-порошковом контроле 
(МПК) авторам неизвестно.

В работах [13;14] нами была рассмотрена воз-
можность использования систем видеонаблюдения 
и нейросетевых технологий при МПК колесных пар. 
Применение специализированного программного 
обеспечения и НС позволяет проводить анализ изо-
бражений, на которых имеется участок с высокой 
интенсивностью свечения люминесцентной суспен-
зии с возможностью выдачи сообщения оператору о 
наличии дефекта.

Скопление магнитного порошка над дефектом 
приводит к изменению интенсивности его свечения, 
что может использоваться в качестве параметра для 
обучения НС.

В настоящее время существует большое число под-
ходов к распознаванию дефектов различного типа. 
Построены автоматизированные системы, использу-
ющие для их классификации статистические методы 
машинного обучения. Такое распознавание имеет 
ряд естественных недостатков: субъективизм, малая 
надежность, зависимость от компетентности опера-
тора и т.д.

Другим подходом к распознаванию дефектов может 
стать использование НС. В отличие от статистических 
методов, НС применяются для решения трудно фор-
мализуемых задач, для которых сложно найти точный 
алгоритм решения.

Разновидностью НС, используемых при анализе 
сложных объектов, являются сверточные НС (англ. 
convolutional neural network, CNN), которые могут 
эффективно использоваться для распознавания и 
классификации изображений [15–18].

Свое название архитектура сети получила из-
за наличия операции свертки, суть которой в том, 
что каждый фрагмент изображения умножается на 
матрицу (ядро) свертки поэлементно, а результат 
суммируется и записывается в аналогичную позицию 
выходного изображения. 

Сверточная НС обычно представляет собой чере-
дование сверточных слоев (convolution layers), суб-
дискретизирующих слоев (subsampling layers) и при 

Рис. 1. Пример архитектуры сверточной НС для задачи классификации изображения
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наличии полносвязных слоев (fully-connected layer) 
на выходе (рис. 1). Все три вида слоев могут чередо-
ваться в произвольном порядке.

Основная идея сверточных НС заключается в том, 
что при обучении НС на основе исследуемых изо-
бражений одного класса, она самостоятельно фор-
мирует наборы признаков (так называемые карты 
признаков), которые в полной мере характеризуют 
этот самый класс, и в то же время, отделяют их от 
других изображений. Все это реализуется в сети, с 
помощью так называемых сверточных слоев, которые 
составляют карты признаков изображения, и слоев 
подвыборки, которые уменьшают масштаб изображе-
ния. Чередование данных слоев позволяет составить 
карты признаков, с помощью которых изображения 
классифицируются. 

На данный момент не существует обоснованных 
рекомендаций для выбора архитектуры сверточных 
НС. Сеть можно собрать из блоков, описанных выше, 
почти в любом порядке и любых размеров.

Основной особенностью и преимуществом НС 
перед традиционными алгоритмами – это возмож-
ность обучения. В процессе обучения НС способна 
выявлять сложные зависимости между входными и 
выходными данными, а также выполнять обобще-
ние. То есть, при успешном обучении, сеть позволит 
получить результат на основании данных, которые 
отсутствовали в обучающей выборке, а также в слу-
чае представления неполных и/или «зашумленных», 
частично искаженных данных. 

Цель работы
Показать возможность использования сверточных 

НС при проведении МПК и разработать алгоритм 
построения НС на базе уже существующей сред про-
граммирования и библиотек.

Методика исследования. Используемое 
оборудование

Для реализации рассматриваемых при МПК алго-
ритмов анализа и классификации дефектов можно 
использовать одну из существующих библиотек. 

Комплект программного обеспечения сверточных 
НС имеет четыре основных составляющих, показан-
ных на рис. 2.

Эти популярные библиотеки были выбраны исходя 
из их возможности поддержки различных платформ 
и языков программирования, а также совместимости 
между собой с практической точки зрения. 

Также в нашем случае был использован ряд других 
библиотек для написания кода, но которые напрямую 
не связаны с разработкой НС. 

Из-за своей доступности и простоты в качестве 
платформы (среды программирования) был выбран 
Google Colab – облачный сервис Jupyter в виде про-
граммы-блокнота для записи, передачи и запуска кода 
в Google CoLaboratory, доступный с любой точки мира 
для написания кода или создания документации. 

В качестве языка программирования был выбран 
Python – высокоуровневый язык программирования, 
отличающийся эффективностью, простотой и универ-
сальностью использования. 

Цифровую обработку полученных изображе-
ний можно представить в виде ряда алгоритмов: 1. 
Бинаризация изображения. 2. Выделение фрагментов 
изображения. 3. Определение формы магнитопорош-
кового следа. 4. Определение площади следа и его 
линейных размеров. 

Наличие такого рода алгоритмов, применительно к 
изображениям различного качества, позволяет в авто-
матическом режиме сформировать представление об 
объекте контроля и выдать заключение о пригодности 
объекта контроля к эксплуатации. Методика иссле-

Рис. 2. Структура сверточной НС
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дования заключается в последовательной обработке 
цифровых изображений с различными характеристи-
ками (светочувствительность, разрешение, контраст-
ность магнитопорошкового следа, УФ-освещенность 
объекта контроля, общая освещенность рабочего 
места и др.) и выявлении особенностей для каждого 
изображения.

Определение реакций алгоритмов на те или иные 
характеристики изображений позволят выявить уяз-
вимые места самих алгоритмов или же их сильные 
стороны. Алгоритмы автоматической обработки циф-
ровых изображений могут быть реализованы в виде 
программного пакета и задействованы при обработке 
результатов [12;22;23].

В нашем эксперименте для обучения НС был под-
готовлен набор входных данных, состоящий из 60 изо-
бражений (файлов в формате *.jpg). 

Выбор формата изображения зависит от конкрет-
ной задачи и требований к его качеству. Многие модели 
машинного обучения адаптированы для работы с изо-
бражениями в формате *.jpg. Обработка изображений 
в таком формате может быть оптимизирована для их 
быстрого чтения и загрузки. Поэтому использование 
того или иного формата непринципиально и формат 
*.jpg был выбран нами в силу своей популярности. 
Причем какой бы формат мы ни использовали, свер-
точная НС (СНС) осуществляет дальнейшее сжатии 
данных на фотографии. Отсюда и независимость как 
таковая от формата представления изображения. 

В качестве изображений использовались фотогра-
фии деталей и составных частей вагонов, сделанные 
авторами в процессе проведения МПК в одинаковых 

условиях равномерной люминесцентной освещенно-
сти, созданной УФ-источником излучения. Этот набор 
данных содержит в себе выборку, состоящую из двух 
классов изображений: 

•изображения, содержащие дефект «def». Дефект 
представляет скопление магнитного порошка над 
естественной трещиной или искусственным дефек-
том с уже известными размерами в виде заводской 
вставки;

•изображения, содержащие фон («fon»), оставлен-
ный после проведения МПК с использованием люми-
несцентной суспензии в условиях отсутствия дефектов 
на поверхности. Фон представляет собой равномерное 
распределение частиц магнитного порошка на участке 
объекта контроля после операции намагничивания и 
нанесения люминесцентной суспензии.

На рис. 3 приведена схема эксперимента, который 
состоял из двух этапов: подготовительного и основ-
ного. На подготовительном этапе осуществлялся 
непосредственно сам МПК выбранных объектов, а на 
основном этапе происходила цифровая регистрация 
изображений и их дальнейшая обработка. 

Объект контроля в процессе МПК, освещался при 
помощи УФ-источника излучения(Ultrafire WF-501В 
UV, Китай) с длиной волны 395 нм. С помощью циф-
ровой фотокамеры с разрешением 64 Мп (фокусное 
расстоянии F=150 мм) регистрировали изображение 
полученных индикаций на участке объекта контроля, 
после чего полученное цифровое изображение загру-
жали на персональный компьютер для дальнейшей 
обработки (см. рис. 3). Освещенность контролиру-
емой поверхности видимым светом измерялась циф-

Рис. 3. Условная схема эксперимента: а – УФ-источник излучения; б –изображение участка объекта контроля после 

проведения МПК; в – цифровая камера; г – компьютер с программным обеспечением
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ровым мультиметром (MASTECH MS-8229, Китай) 
и не превышала 20 лк.

В ходе эксперимента для получения качественных 
фотографий полученных индикаций после проведения 
МПК соблюдались такие параметры как равномер-
ная УФ-освещенность поверхности объекта контроля 
(расстояние выдерживалось за счет стационарного 
штатива с возможностью фиксации УФ-источника 
излучения) и одинаковое расстояние от цифровой 
фотокамеры до объекта контроля. 

Магнитопорошковому контролю подвергались сле-
дующие детали: маятниковая подвеска автосцепного 
устройства с продольной и поперечными трещинами, 
втулка шпинтона с продольной трещиной, фрагмент 
цельнокатаного колеса с поперечной трещиной на 
внутренней части обода, ролик подшипника с искус-
ственным дефектом в виде вставки, гайка шести-
гранная с фланцем поводка тележки с продольной 
трещиной).

По набору входных данных (рис. 4) можно пред-
сказать результат, например, фоновое свечение инди-
катора или свечение дефекта (трещина, волосовина, 
ложные индикации по рискам и др.).

Итоговая оценка качества обучения НС после 
завершения процесса обучения проводилась на тесто-
вом наборе данных, который также представлял под-
борку изображений, не входящих в первоначальный 
датасет1, с магнитопорошковыми индикациями на 
упомянутых выше деталях.

Учитывая небольшое количество имеющихся изо-
бражений, важно было получить максимально хоро-
ший результат при распознавании дефекта, вероят-
ность которого можно оценить в процентах. Наиболее 
оптимальным методом обучения является правило 
«80 на 20», т. е. 80% всех изображений НС будет 
использовать в качестве материалов для обучения, 
а оставшиеся 20% используются для проверки пра-
вильности работы НС. Это правило используются 

Рис. 4.Пример используемых изображений для формирования входных данных при обучении НС: а – фоновое 

свечение суспензии КСФ-12 на поверхности упорного кольца подшипника буксового узла; б – свечение дефекта 

(трещины) на поверхности упорного кольца подшипника буксового узла; в – фоновое свечение суспензии КСФ-12 на 

поверхности цельнокатаного колеса колесной пары; г – свечение дефекта (трещины) на поверхности цельнокатаного 

колеса колесной пары

а б

в г

1Датасет – совокупность данных, систематизированных в определенном формате (в нашем случае датасетом является набор фотографий 
в формате «*.jpg»).
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практически для всех НС, от которых ожидают опре-
деленный результат на выходе [24–27].

Результаты исследований и их обсуж-
дение

Последовательность написания кода на языке 
Python, с помощью которого происходило обучение 
НС для распознавания и классификации изображений 
состоит из следующих операций:

1. Импорт нужных нам библиотек в среду разра-
ботки (рис. 5).

2. Подключение облачного хранилища, в кото-
рое предварительно были загружены изображения 

(рис. 6). Так как разработка производится в облачном 
сервисе, необходимо изображения в него загрузить. 
Реализовать данную задачу можно разными спосо-
бами, в том числе подключить облачное хранилище 
в среду разработки.

3. Создание тестового и проверочного датасета 
(рис. 7).

4. Кэширование датасета, основной функцией кото-
рого является ускорение процесса извлечения данных 
(рис. 8).

5. Создание и компилирование2 модели НС (рис. 9). 
Для нашей задачи хорошо подошла последователь-
ная архитектура НС, состоящая из блоков свертки 

Рис. 7. Код созданного тестового и проверочного датасетов

Рис.6. Подключение облачного хранилища Google Drive

Рис. 5. Ввод библиотек в среду разработки Google Colab

 2Без компилятора любой код на языке программирования будет для компьютера просто текстом – он не распознает команды и не смо-
жет их выполнить
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с максимальным объединяющим слоем в каждом из 
них, и с полносвязным слоем на 128 единиц, вместе с 
нелинейной активационной функцией Relu. 

6 . Обучение НС (рис. 10). Для обучения НС ука-
зывалось количество эпох3 обучения и использовался 
метод fit. Метод fit используется для возвращения 
объекта, в котором хранятся значения функций потерь 
для тренировочной и проверочной выборки (дата-
сета). 

7. Проверка качества обучения НС, с использо-
ванием библиотеки Matplotlib. Определение точно-
сти и потерь4 НС по статистическим данным в виде 
графиков. 

По результатам обучения НС были получены зави-
симости точности и потерь навыков обучения и про-
верки НС (рис. 11).

Видно, что к 10-й эпохе точность навыков обуче-
ния и проверки НС растет, а потери навыков обуче-

ния и проверки снижаются. Это говорит о том, что 
НС к 10-й эпохе начинает хорошо распознавать как 
тренировочный, так и проверочный датасет. Можно 
считать, что обучение НС прошло успешно.

В противном случае, как это часто бывает при раз-
работке НС, потери точности при обучении снижа-
ются, однако потери точности при проверке растут.

Это говорит о том, что НС хорошо справляется с 
изображениями, используемыми при ее тренировке, и 
плохо справляется с изображениями, используемыми 
для ее проверки. Это проблема называется overfitting 
(с англ. переобучение).

Для решения данной проблемы существуют обще-
принятые методики, такие как:

•увеличение датасета, либо путем поиска новых 
изображений, либо при помощи техники, которая 
называется «аугментация датасета». Аугментация 
– это прием, который позволяет расширить дата-

Рис. 8. Кэширование датасета

Рис. 9. Создание модели сверточной НС

      3Эпоха – один цикл обучения НС на массиве данных.

4Точность НС представляет показатель того, насколько правильно НС классифицирует изображения. Потери НС – показатель того, 

насколько далеко предсказуемое значение находится от желаемого выходного значения. Чем больше значение показателя потерь, тем хуже 

справляется НС со своей задачей и наоборот.
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сет в несколько раз путем несложных манипуляций 
с изображениями, а именно, картинки в датасете 
каким-либо образом поворачивают, отображают, 
искажают и т.д. 

•регуляризация, это довольно простой матема-
тический прием, позволяющий повысить точность 
модели и уменьшить ненужные отклонения. Как пра-
вило в TensorFlow для этого используются методы 
Dropout или Batch Normalization [28–30].

Ручная проверка обученной модели НС (загрузка 
нового изображения, которое отсутствовало в датасе-
тах (тестовых и проверочных) производится следующим 
образом. Указывается путь на изображение, находящи-
еся в Google Drive и прописывается код, загружающий 
изображение в модель НС (рис. 12).

По итогам обучения НС с задачей классификации 
дефекта (трещины) и фона на образцах были полу-
чены следующие результаты.

Рис.10. Обучение НС

а б

Рис.11. Зависимость точности (а) и потерь (б) навыков обучения (тренировочный процесс) и проверки НС
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На рис. 13 показано, как НС определила с точностью 97,98% изображение, содержащее дефект и с точ-
ность 82,33% изображение, содержащее фон.

С учетом использования в работе только набора данных в виде двух классов изображений «def» и «fon», 
средняя точность НС составила 90,16%, что является приемлемым результатом при небольшой выборке в 
60 фотографий.

Заключение
Таким образом, выбранная авторами конфигурация модели НС является удачной и вполне работоспособной 

при работе с распознаванием индикаций при проведении МПК. В дальнейшем в целях усовершенствования 
НС в датасет можно загружать изображения с ложными магнитопорошковыми индикациями, вызванными 

Рис. 12. Проверка работы НС

а

б

Рис. 13. Результаты работы НС по определению магнитопорошковых индикаций 

фонового свечения (а) и дефекта (б)
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чрезмерной концентрацией магнитного индикатора в используемом объеме суспензии, а также наличием 
задиров, рисок и других повреждений механического характера.

Предложенный авторами алгоритм работы НС можно взять за основу при идентификации магнитопорош-
ковых индикаций в ходе выполнения автоматического или автоматизированного МПК деталей подвижного 
состава с использованием специализированных стендов и видеосистем. 
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