ПРОБЛЕМЫ УПРАВЛЕНИЯ ПОЕЗДОПОТОКАМИ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ «ВИРТУАЛЬНАЯ СЦЕПКА»

В статье рассмотрена автоматизация процесса контроля и анализа пропуска пакетов грузовых поездов в режиме «Виртуальная сцепка» с формированием автоматизированных выходных форм для трехуровневой системы оперативного контроля и анализа графика движения, автоматического определения причин разъединения виртуально сдвоенных поездов и ответственных подразделений ОАО «РЖД».

<u>Ключевые слова</u>: «Виртуальная сцепка», повышение пропускной способности, поездная работа, организация пропуска поездов

EDN: EXICCQ

В условиях дефицита пропускной способности железнодорожных направлений технология, направленная на сокращение межпоездных интервалов на перегонах, уменьшение станционных интервалов попутного отправления и попутного прибытия с использованием инновационных средств интервального регулирования движения поездов — одно из перспективных и относительно недорогих направлений повышения пропускной способности участков. Данная технология позволяет решить проблему возрастающего объема перевозок без затрат на модернизацию устройств железнодорожной автоматики и телемеха-

ники (ЖАТ) и строительства дополнительных главных путей [1].

За счет модернизации бортовых технических средств безопасности, автоведения и связи удалось создать универсальную технологию, позволяющую максимально сблизить поезда по интервалу, что делает возможным высвободить дополнительные нитки графика для назначения дополнительных поездов и тем самым повысить пропускную способность железнодорожной линии.

В настоящее время проведены опытные поездки и подтверждена возможность реализации автоматиче-

Никонюк Андрей Александрович, начальник центра исследований и подготовки комплексных научных проектов АО «Научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи на железнодорожном транспорте» (АО «НИИАС»). Область научных интересов: организация движения поездов в условиях проведения ремонтно-путевой компании, интервальное регулирование движением поездов, организация движения поездов по технологии «Виртуальная сцепка», вопросы перспективного увеличения пропускной способности железнодорожных участков, управление перевозочным процессом. Автор одной научной работы.

Шатохин Андрей Андреевич, кандидат технических наук, доцент кафедры «Управление транспортными процессами» Российского университета транспорта (РУТ (МИИТ)). Область научных интересов: логистика, управление перевозочным процессом железнодорожного транспорта. Автор 55 научных работ.

Биленко Геннадий Михайлович, кандидат технических наук, доцент, заведующий кафедрой «Управление транспортными процессами» Российского университета транспорта (РУТ (МИИТ)). Область научных интересов: вопросы выбора способов усиления пропускной способности железнодорожных станций и участков, совершенствования технологии работы железнодорожных станций. Автор 56 научных работ.

Филипченко Никита Сергеевич, аспирант Московского государственного технического университета им. Н.Э. Баумана (МГТУ им. Н.Э. Баумана). Область научных интересов: автоматическое управление локомотивами. Автор одной научной работы.

А.А. Никонюк, А.А. Шатохин, Г.М. Биленко, Н.С. Филипченко «ПРОБЛЕМЫ УПРАВЛЕНИЯ ПОЕЗДОПОТОКАМИ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ «ВИРТУАЛЬНАЯ СЦЕПКА»»

ского соединения поездов в пакет на перегоне с применением устройств КЛР.1 «контроллер логики радиоканальный» (позволяет распределять временные слоты для организации сети передачи данных между несколькими объектами) и отечественных радиомодемов передачи данных «M-Link». Подтверждена возможность взаимодействия между локомотивами при движении трех и более поездов.

Также подтверждена возможность движения поездов в режиме «АВТОВЕДЕНИЕ» при следовании по неправильному пути.

Процесс организации пропуска поездов в режиме «Виртуальная сцепка» (ВСЦ) технологически состоит из трех основных этапов (рис. 1):

- 1. Определение станции формирования пакета поездов для пропуска в режиме «Виртуальная сцепка».
- 2. Организация пропуска сформированного пакета поездов в режиме «Виртуальная сцепка» по запланированному маршруту следования, в том числе:
 - организация пропуска по перегонам;
 - стоянки на промежуточных станциях;
 - стоянки на технических станциях.
- 3. Место расформирования пакета или отдельных поездов в пакете поездов в режиме «Виртуальная сцепка».

На этапе формирования пакета поездов для пропуска в режиме «Виртуальная сцепка» необходимо не только своевременно подобрать и отправить грузовые поезда в нужной последовательности, но и обеспечить наличие необходимого количества локомотивов, оборудованных исправной системой ИСАВП-РТ-М, модемами «М-Link».

В процессе пропуска пакета поездов в режиме «Виртуальная сцепка» необходимо обеспечить его целостность при пропуске по перегонам, стоянках на промежуточных станциях и станциях смены локомотивных бригад (рис. 2). При этом «гибкость» данной технологии позволяет поездному диспетчеру варьировать количество поездов, очередность поездов в пакете в зависимости от эксплуатационной обстановки.

Очевидно, что организация пропуска грузовых поездов в режиме «Виртуальная сцепка» усложняет процесс управления поездопотоками и повышает его интенсивность, что неизбежно будет приводить к дополнительным технологическим нарушениям в эксплуатационной работе [2].

Проведен анализ зависимости доли грузовых поездов, пропущенных по технологии «Виртуальная сцепка» и технологических нарушений, приходящихся на один поезд за 2023 год. Трендовые линии

Рис. 1. Этапы организации пропуска поездов в режиме «Виртуальная сцепка»

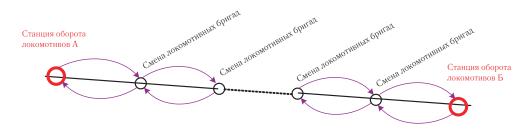


Рис. 2. Схема пропуска пакета поездов в режиме «Виртуальная сцепка» между станциями оборота локомотивов

№ 3′ 2024 **15**

показывают, что на большинстве дорог использование «Виртуальной сцепки» приводит к увеличению удельного количества технологических нарушений (рис. 3), что говорит об усложнении управляемости процесса организации движения поездов при увеличении интенсивности использования технологии «Виртуальная сцепка» [3].

По результатам анализа можно сделать вывод о необходимости повышения качества управления пропуском поездов в условиях интенсивного использования «Виртуальной сцепки», так как увеличение технологических нарушений будет снижать эффективность используемой технологии.

Важнейшими составляющими процесса управления пропуском поездов в режиме «Виртуальная сцепка» являются контроль и анализ.

В настоящее время существующие выходные формы статистической отчетности о грузовых поездах, следующих на инфраструктуре ОАО «РЖД» по технологии «Виртуальная сцепка», не обеспечивают контроль и анализ для всех необходимых этапов (см. рис. 1). Также отсутствует автоматизация процесса выявления причин внепланового прекращения движения поездов по технологии интервального регулирования «Виртуальная сцепка» с определением причин и ответственных служб, что снижает эффективность управления в целом.

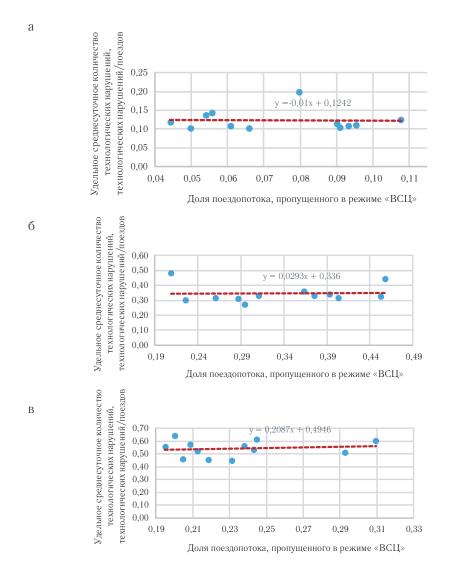


Рис. 3. Корреляция удельного количества технологических нарушений и доли поездопотока, пропущенного в режиме автоведения по технологии «Виртуальная сцепка»: а – Восточно-Сибирская железная дорога; б – Забайкальская железная дорога железная дорога

Для повышения результативности управления процессом пропуска поездов с использованием технологии «Виртуальная сцепка» АО «НИИАС» в 2023 году при взаимодействии с причастными железнодорожными департаментами (ЦТех, ЦЖД, ЦТ) разработал методические указания по формированию автоматизированных выходных форм для трехуровневой системы оперативного контроля и анализа движения грузовых поездов в режиме «Виртуальная сцепка» на Восточном полигоне. В документе описывается не только порядок расчета показателей и формирования выходных форм для всех уровней управления перевозочным процессом, но и алгоритм выявления фактов внепланового отключения режима «Виртуальная сцепка» с автоматическим определением причин и ответственных служб, в том числе:

- увеличение межпоездного интервала;
- нарушение технологии пропуска;
- приказ (регулировка) ДНЦ;
- неисправность/отказ локомотива;
- неисправность/отказ инфраструктуры;
- неисправность/отказ ИСАВП-РТ-М;
- ограничение скорости на перегоне;
- разрыв связи;
- прочие.

Для реализации алгоритма необходимо использование исходных данных из различных систем, включая Единую модель данных перевозочного процессса (ЕМД ПП), систему взаимодействия с локомотивом посредством систем цифровой радиосвязи (СВЛ ТР), комплексную автоматизированную систему учета, расследования и анализа случаев технологических нарушений (КАСАТ) и комплексную автоматизированную систему учета, контроля устранения отказов технических средств и анализа их надежности (КАСАНТ).

Для дальнейшего повышения эффективности использования технологии «Виртуальная сцепка» необходима автоматизация процесса планирования, которая позволит повысить прозрачность и качество формируемых текущих планов поездной работы, а также предоставит возможность автоматически оценивать их выполнение

Литература

- 1. Снижение дефицита пропускных способностей железнодорожных направлений за счёт внедрения интервального регулирования движения поездов / П. В. Куренков, И. А. Солоп, Е. А. Чеботарева, Е. А. Герасимова, Н. В. Курганова .- Текст: непосредственный // Мир транспорта. 2022. Т. 20, №5 (102). С. 46 53.
- 2. Сравнительная оценка параметров движения поездов для различных вариантов виртуальной сцепки / Е. Н. Розенберг, А. В. Озеров, В. И. Кузнецов, С. С. Тихонов .- Текст : непосредственный // Мир транспорта. 2023. 7.21., № 4(107). 7.20. 7.20. 7.20.
- 3. «Виртуальная сцепка» на Восточном полигоне: достигнутые эффекты и направления развития / А. И. Долгий, А. Г. Сахаров, М. А. Дежков, С. А. Макиевский, М. А. Чернин . Текст : непосредственный // Транспорт Российской Федерации. 2023. № 5 6 (108 109). С. 15 19.

№ 3′ 2024 **17**