МЕТОД АНАЛИЗА СИСТЕМ С ПАРАМЕТРАМИ, ИЗМЕНЯЮЩИМИСЯ ПО СЛОЖНОМУ ЗАКОНУ

В.И. Апатцев

В статье рассмотрен класс систем с переменными параметрами, к которому относятся и транспортные системы. Существенным фактором для анализа таких нестационарных систем является закон изменения параметра, который отражает характер, скорость, частоту и амплитуду изменения параметров. Предложен подход, основанный на описании системы линейным дифференциальным уравнением с переменными во времени коэффициентами.

Ключевые слова: параметрические колебания, нестационарные транспортные системы, преобразование Лапласа

EDN: OYVFTO

еальные технические объекты, как правило имеют не постоянные, а изменяющиеся во времени параметры, т.е. являются нестационарными. К таким системам относится широкий круг систем управления. Часто их называют параметрическими. Изучение параметрических систем является необходимым и для объектов железнодорожного транспорта.

Это системы, динамика которых описывается линейным дифференциальным уравнением с переменными во времени коэффициентами:

$$a_{0}(t)\frac{d^{n}y}{dt^{n}} + \dots + a_{n-1}(t)\frac{d_{y}}{dt} + a_{n}(t)y(t) =$$

$$= b_{0}(t)\frac{d^{m}x}{dt^{m}} + \dots + b_{m}(t)x(t). \tag{1}$$

Наиболее изученным является класс объектов с периодически изменяющимися параметрами или периодически нестационарные объекты. Мало изученными являются системы с параметрами, изменяющимися по более сложным законам.

Пусть параметры $a_i(t)$ и $b_i(t)$ уравнения (1) в общем случае имеют вид

$$f(t) = \left\{ \sum_{s=-\infty}^{\infty} b_s e^{js\Omega t} \right\} \left\{ \sum_{m=0}^{\infty} g_m e^{-m\beta t} \right\}. \tag{2}$$

Применим аналогично [1;2] к уравнению (2) преобразование Лапласа.

В этом случае после применения преобразования Лапласа будем иметь неизвестные вида

$$Y(p+js\Omega+m\beta), (3)$$

где $s = \text{от } -\infty \text{ до } \infty$, $m = \text{от } 0 \text{ до } \infty$.

Здесь возникает проблема расположения неизвестных. Расположить их в строку не удается, поэ-

Горелик Владимир Юдаевич, доктор технических наук, профессор, профессор кафедры «Системы управления транспортной инфраструктурой» Российского университета транспорта (РУТ (МИИТ). Область научных интересов: методы анализа систем автоматического управления и связи, аналоговых и цифровых систем с параметрами, изменяющимися во времени. Автор более 130 научных работ.

Апатцев Владимир Иванович, доктор технических наук, профессор, советник при ректорате Российского университета транспорта (РУТ (МИИТ)). Область научных интересов: организация и управление транспортными процессами. Автор около 200 научных и учебно-методических трудов.

Смыслов Алексей Владимирович, аспирант кафедры «Системы управления транспортной инфраструктурой» Российского университета транспорта (РУТ (МИИТ). Область научных интересов: методы анализа железнодорожных систем автоматики, телемеханики и связи. Автор трех научных работ.

тому разместим их на плоскости, т.е. заменим строку определителя плоскостью (рисунок).

На рисунке пара цифр соответствует переменным $Y(p+js\Omega+m\beta)$, s=от $-\infty$ до ∞ , m=от 0 до ∞ , т.е. вместо, например, $Y(p+j2\Omega+3\beta)$ записано просто 2,3.

Заменив p на $p+jk\Omega+h\beta$, где k=от $-\infty$ до ∞ , h=от 0 до ∞ , получим четырехмерные бесконечные определители. Каждой паре значений k и h соответствует плоскость значений переменных.

Если зафиксировать значение k, т.е. считать k=const и менять h от 0 до $+\infty$, то получим плоскость определителя, на которой все значения переменных, находящихся на строках плоскости h < k, будут равны нулю.

В итоге в качестве характеристического уравнения вместо четырехмерного бесконечного определителя получим бесконечный определитель, соответствующий дифференциальному уравнению с переменными вида

$$f(t) = \left\{ g_0 \sum_{s=-\infty}^{\infty} b_s e^{js\Omega t} \right\},\,$$

т.е. от второй скобки в выражении (2) останется только коэффициент g_0 .

Это означает, что характеристическое уравнение будет определяться только периодическими составляющими параметров дифференциального уравнения. Оно будет иметь вид, рассмотренный в [1].

Если обозначить корни характеристического уравнения

$$\gamma_i + jk\Omega\;,$$

$$i = \overline{1,r}; \ k = 0, \pm 1, \pm 2, ..., \pm \infty$$

где r — порядок дифференциального уравнения, то решение самого уравнения будет иметь вид

$$Y(t) = \sum_{i=1}^{r} \sum_{k=-\infty}^{\infty} \sum_{m=0}^{\infty} b_{ikm} e^{+jk\Omega + m\beta}.$$

Определение коэффициентов b_{ikm} — отдельная задача, требующая своего решения.

Литература

- 1. A method of investigating electrical systems with periodically changing parameters/A. V. Gorelik, V. Y. Gorelik, V. I. Apattsev, A. P. Baturin, V. A. Kobzev, I. A. Zhuravlev. Текст: непосредственный // Russian Electrical Engineering. 2017. T. 88, № 12. C. 842-844
- 2. Тафт, В. А. О частотных и временных характеристиках систем с переменными параметрами / В. А. Тафт, В. Ю. Горелик. Текст : непосредственный // Докл. АН СССР. 1969. Т. 187, № 6. С. 1251-1253.

m/s	4,0	3,0	2,0	1,0	0,0	-1,0	-2,0	-3,0	-4,0
	4,1	3,1	2,1	1,1	0,1	-1,1	-2,1	-3,1	-4,1
	4,2	3,2	2,2	1,2	0,2	-1,2	-2,2	-3,2	-4,2
	4,3	3,3	2,3	1,3	0,3	-1,3	-2,3	-3,3	-4,3
	4,4	3,4	2,4	1,4	0,4	-1,4	-2,4	-3,4	-4,4
	4,5	3,5	2,5	1,5	0,5	-1,5	-2,5	-3,5	-4,5
	4,6	3,6	2,6	1,6	0,6	-1,6	-2,6	-3,6	-4,6
	4,7	3,7	2,7	1,7	0,7	-1,7	-2,7	-3,7	-4,7
	4,8	3,8	2,8	1,8	0,8	-1,8	-2,8	-3,8	-4,8
	4,9	3,9	2,9	1,9	0,9	-1,9	-2,9	-3,9	-4,9

Рисунок. Плоскость строки определителя

№ 2′ 2024 **27**